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The pseudo-current method proposed by B. Marder for eliminating charge conservation 
errors in electromagnetic particle-in-cell codes has been analyzed and extended. The new 
method has been shown to be effective and effkient in removing high frequency, short 
wavelength errors caused by the choice of charge deposition algorithms. To maintain the 
physical properties of the electromagnetic field the choice of the free parameter in the 
originally proposed method has been restricted. It is found that the parameter should be 
homogeneous spatially and that an error minimization technique can be used to determine its 
value. A comparison is made between this adaptive pseudo-current method and the effects of 
spatial smoothing on the transverse and longitudinal components of the electromagnetic 
field. ( 1990 Academic Press. Inc. 

INTRODUCTION 

In electromagnetic particle-in-cell (PIC) codes the most widely used algorithms 
for particle charge and current attribution on a discretized mesh do not conserve 
charge exactly. The discrepancy between the particle charge and the charge conser- 
vation law implied by field solve algorithms can result in errors which lead to 

numerical instabilities characterized by the addition of noise in the high k part of 
the spectrum and non-conservation of energy. It is the purpose of this paper to 
examine in detail one of the newest techniques for overcoming this problem, namely 
the pseudo-current method proposed by Barry Marder [ 11. 

Historically there have been two solutions proposed for the problem of charge 
conservation errors : (1) the use of a Poisson correction [24] and (2) the use of 
more complicated charge and current deposition algorithms which are exactly 
charge conserving [ 5-71. In electromagnetic PTC codes charge nonconservation 
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is a local phenomenon and is sometimes intertwined with the use of smoothing or 
filtering for the elimination of high frequency, short wavelength noise [S, 91. These 
two strategies have advantages and disadvantages. A Poisson correction is exact. It 
works well in simple geometries where the Poisson solution can be implemented 
using fast direct solvers, such as FFTs. However, it can be difficult or expensive to 
implement in complicated geometries when irregular structures are present on the 
mesh. Such complications call for iterative Poisson solvers or capacitance matrix 
methods coupled to a fast FFT solver [lo]. Exact deposition algorithms eliminate 
the charge conservation problem completely. They are, however, more complicated 
and are therefore more difftcult to code and expensive to run. The deposition of 
currents on a mesh involves a scalar indirect index operation which is generally 
acknowledged to be the principal performance bottleneck in electromagnetic PIC 
codes. Exact charge consevation is obtained at the cost of expanding the deposition 
stencil to more of the surrounding meshpoints (up to 12 points in two dimensions). 
Conservative methods are also characterized by noise at short wavelengths due to 
the “nearest gridpoint” nature of the current deposition [4, 63. 

Smoothing charge and current terms is effective in postponing or hiding the 
effects of charge non-conservation because the conservation errors are local. This 
means that conservation errors are of a wavelength for which smoothing is most 
effective. The use of smoothing, however, is not limited to charge conservation 
errors, and has important effects of its own. 

The recent paper by Barry Marder introduced a method for managing charge 
conservation errors in electromagnetic PIC codes which elegantly avoids the 
problems associated with the usual methods described above. We have analyzed 
this new method which is based on a correction term to the electric field advance 
and which depends on the choice of an algebraic coefficient. The analysis suggests 
an optimal choice for the correction coefficient and a generalization of the method. 

GENERALIZATION OF THE PSEUDO-CURRENT METHOD 

The basic equation of the pseudo-current method is an augmented Ampere’s 
equation : 

where 

+v.a-p,. (2) 

The quantity 6p was shown to satisfy an inhomogeneous diffusion equation driven 
by a source term representing charge conservation errors due to imperfect charge 
and current deposition. As first described, the constant a was left as a free 
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parameter, which for numerical stability in one dimension has to satisfy the 
condition : 

2a 
p< l. (3) 

This augmented Ampere’s equation is differenced in a straightforward manner to 
time advance the electric fields. When the equation is differenced a question arises 
as to which electric fields should be used in the divergence calculation. Since the 
particle contribution to the charge density, p, is known at the “new” positions 
.Y N + ‘, then the electric field should also be used at the advanced time tN +I. This 
is most easily accomplished by recasting the equation for advancing E into two 
steps: a normal Ampere’s equation, 

D ‘~+l=~“+~t[~x~N+1/2_jN+1!2], (4) 

followed by the addition of the pseudo-current term using fields at tN+ ’ : 

Dl 
‘N+~=DN+I 

0 +“V(V.a~+‘-,~+l). (5) 

When cast in this manner it is natural to allow repeated applications of the 
correction term using progressively more accurate values of the time advanced 
electric fields in the difergence term. The iteration formula is 

D -N+l=~N+I 
m+l m+,+C1,+,V(V.a~+l-p~+‘). (6) 

By taking the curl of the above equation it can be seen that as long as the curl 
of the gradient vanishes for the differencing scheme chosen and the coefficient ~1 
does not vary spatially, this iteration term will not affect the transverse or radiating 
part of the electric field. While the convergence of this iteration formula is not espe- 
cially fast (being a time distributed Picard iteration) other faster iteration schemes 
may not preserve the longitudinal character of the correction fields. 

As suggested by Langdon, an alternate form of the iteration scheme which we 
have not explored is 

D -N+l=fiN+l 
??I+1 ,+,+V(a,+,(V.~,N+l-pi+‘)). (6b) 

The virtue of this formulation is that only the longitudinal component is affected 
and that c( can be varied spatially. This is probably important for rapid convergence 
when using non-uniform meshes. 

The proposed correction eliminates the error in the longitudinal component of 
0. Noise in the longitudinal component caused by particle statistics and noise in 
the transverse component of b due to either statistics or deposition errors in the 
transverse currents is unaffected. 
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This scheme is conceptually a time distributed iterative solution to Poisson’s 
equation for the correction charge, and while different from Marder’s method it is 
based on his initial introduction of the pseudo-current. Although a large number of 
iterations would asymptotically approach a complete solution of Poisson’s equa- 
tion, in practice a few iterations are sufficient. The approach is consequently much 
more efficient than performing a complete solution by direct methods such as FFT 
or ICCG. 

STRATEGIES FOR THE CHOICE 
OF THE PSEUDO-CURRENT COEFFICIENT CI 

The effect on the error of this iterative correction depends on the choice of the 
coefficient CL If we define the error to be 

6p,=(VJy-p,““), (7) 

then taking the divergence of the iteration equation and subtracting pf’ ’ from 
both sides we obtain 

6P m+l=h?I+4?l+lV2~Pm. (8) 

Decomposing 6p, + r in eigenvalues of V*, we obtain 

Ml+, =6pk(l -cr,+,k2). (9) 

When 11 -c~,+i k21 < 1 for all k then the charge conservation error will decay for 
repeated iterations. This expression sets the convergence criteria for the algorithm. 
Since errors in the current and charge deposition to the mesh are local in nature 
it is reasonable to assume that most of the error is at short wavelengths or high k 
number. The natural choice for a then becomes 

For short wavelength errors the iteration term is very effective. 
Instead of chasing a constant factor c(,+ , for each iteration, the technique can 

be improved by one of several approaches. A popular method for minimizing the 
error over an interval is to fix the number of iterations and select the coefficients 
LX,+ i in such a way that the resulting filter function polynomial is minimized over 
the desired part of the spectrum. In this case, 

apk,=6p; fi (1 -ctik2)=i5p;P,,,(k2). 
i=l 

(11) 

and the coefficients cli are identical for each timestep. 
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It is also possible to adaptively calculate an c(,+ i in such a way as to minimize 
the mean squared error in the fields at each iteration. If we choose the norm and 
define the error to be 

E = c (hm + I J2 VOL”,, 
mesh 

(12) 

then substituting the iteration formula from Eq. (8) yields 

6 = c Gb; + %I+ 1 b, v2 b, + a;+ 1 (V2 &A?J2) V4,“,. (13) 
Mesh 

If the above error is minimized with respect to LY, + I by differentiation and set equal 
to zero we can solve for the c(,,, + i. Doing this we obtain 

-c Mesh brn v2 brn volzone 
a,+]= 

c Mesh tv2 6P,)2 volzone 
(14) 

RESULTS 

To test the algorithm, an example based on the behavior of a doubly periodic, 
hot, low density, charge neutral plasma was selected. This simple geometry was 
chosen for two reasons. First, Marder’s original paper has already demonstrated 
that the pseudo-current term being applied in each iteration can be performed for 
general boundary conditions, as in his magnetron example. Second, a doubly peri- 
odic problem will allow a direct and simple diagnosis of errors in k-space. For each 
simulation several diagonostics were taken. First, the cx obtained from the adaptive 
calculation above was plotted versus time. Second, the RMS charge error (or 
correction charge) was measured and normalized to the maximum charge 
magnitude on the mesh; and 

which represents the relative error, is then plotted versus time. Finally, the spectrum 
of the correction charge was measured and plotted versus wavenumber k for 
various combinations of pseudocurrent corrections and a simple centered spatial 
smoothing iteration. 

For these simulations the zone size chosen was 0.01 m. Therefore the optimal 
static CI should be 1.25 x 10-5. Figure 1 shows how the adaptively calculated c( com- 
pares with our a priori estimate. As can be seen the least squares calculation yields 
an a which is 1.7 times the static value. When the larger value of a is used, the 
region of strongest error reduction is moved away from the highest wavenumbers 
towards the midrange of the spectrum where there are many more modes. 
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FIG. 1. A comparison between the adaptively calculated c( and the a priori static estimate. 

Although not shown here the calculated c( was also measured in the case where 
a single spatial smoothing iteration was performed on the deposited currents and 
charge before the pseudo-current correction was applied. The prescription for the 
spatial smoothing was to perform alternating sweeps in each direction using 

M+l=- 
Pk $+1 (16) 

where M is the number of smoothing steps. The calculated M was centered around 
2.5 x 10P5, exactly double the static ct. This is to be expected since the spatial 
smoothing already reduced the error strongly at high wavenumber. If c1 were to 
exceed 2.5 x 1O-5 then the errors at the highest wavenumber are changed in sign 
and magnified. When two pseudo-current iterations are performed for a single time 
step the calculated CI reported from the last iteration is about 1.5 times the static 
value. This indicates that the first iteration is focused on midrange k wavenumbers 
and then subsequent iterations move towards higher wavenumbers. 

Charge errors are further reduced as additional iterations are performed. Figure 2 
shows the normalized correction charge versus time for six runs. From top to 
bottom they are the history of the correction charge for 0 to 5 pseudo-current 
iterations. No correction gives charge errors on the order of 15%. A single 
pseudo-current iteration leaves errors of 0.7%! Further iterations reduce the error 
although in lessening degree. 

The effect of applying a simple spatial smoothing operation on the deposited 
charges and currents before applying the pseudo-current correction will have the 
effect shown in Fig. 3. Smoothing alone without any pseudo-current correction 
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FIG. 2. A comparison of normalized correction charge for differing numbers of correction iterations 
Shown are zero through live iterations. 

only lowers the normalized error to about 4% compared with 0.7%. When the 
correction term is iterated, the relative improvement of each iteration is the same 
as the case without smoothing. 

The effect of both the pseudo-current iteration and spatial smoothing is further 
shown by examining the correction charge spectrum as a function of wavenumber 
for various numbers of smoothings and correction terms. Figure 4 shows the correc- 
tion charge spectrum for 0 to 5 pseudo-current iterations without any prior spatial 
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FIG. 3. A comparison of normalized correction charge for differing numbers of correction iterations. 
One spatial smoothing pass was done before applying the pseudo-current corrections. 
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4. Correction charge spectrum for different numbers of pseudocurrent 
smoothing. 
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smoothing of currents or charge. Errors continue to be reduced with increasing 
iteration number even for low to moderate wavenumber. Figure 5 is a display of the 
same data but for many more iterations, namely 0 to 50 in increments of 5. After 
the first five iterations, the rate at which errors are reduced has clearly become 
more strongly dependent on the value of k and seems focused at the highest 
wavenumbers. After 25 iterations, the error at the highest wavenumbers is not 
further reduced because it has reached machine roundoff. 

I ' I ' I ' I I I * I 1 

-2 
-a > -2- 
2 0 
P -4 - 
d 
42 -6 - 
s 5 

& 
-8- 

2 -10 - 10 

E: 
.0 

-12- 
; 15 
0 -14- 

& -16- 20 
5! 
M -18- 
,o 

I, I I. 1 I I. 1. I 1 
2 4 6 8 10 12 14 16 

Wavenumber K 

FIG. 5. Same as Fig. 4 except that the effect of many more (up to 50) iterations is shown. 
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FIG. 6. The effect of iterating the spatial smoothing formula on the correction charge spectrum is 
shown. 

The effects of iterating the spatial smoothing formula is shown in Fig. 6. These 
runs included no pseudo-current corrections, and display the correction charge 
spectrum for 0 to 5 iterations of the spatial smoothing formula. The large drop in 
the spectrum for all wavenumbers between 0 and 1 iteration is due to the fact that 
errors accumulate with no smoothing. The step to step effect is really only evident 
as you go from iteration 1 to 2 and above. It is clear that spatial smoothing has 
very little effect at low wavenumber. It also appears that even where spatial 
smoothing is most effective (at high wavenumber), the pseudo-current correction 
will reduce divergence errors more rapidly than spatial smoothing. Over all 
wavenumbers, the first iteration of the pseudo-current correction is about four 
times as effective as one iteration of spatial smoothing. 

CONCLUSIONS 

The pseudo-current method has proven to be effective at eliminating charge con- 
servation errors, especially when applied with a coefficient calculated to minimize 
the RMS charge errors. It is effective not only for high k-number errors but also at 
middle and lower k numbers. That the method is more effective at this than the 
spatial smoothing of currents and charge is not surprising. It was specifically 
designed to remove divergence errors while smoothing simply damps short 
wavelength source terms without discriminating between conservation errors and 
correct sources. 

While the pseudo-current method is limited to affecting only longitudinal fields, 
smoothing affects both longitudinal and transverse sources. Application of smooth- 
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ing to the charge and current density permits residual non-conservation errors to 
persist during future timesteps. Once source errors have been allowed to drive 
errors in the fields, those errors will remain indefinitely. Pseudo-current correction, 
on the other hand, will be continually working to reduce the charge conservation 
errors in the fields from step to step. 

Even though the ability to maintain fields with the correct divergence is very 
important, it is also true that a correct, charge conserving and energy conserving 
simulation may still be noisy. In this case a judicious application of current and 
charge smoothing will be one way to reduce noise. This will be a simpler choice 
now that the issue of charge conservation error has been separately addressed by 
a more discriminating and effective tool. 
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